Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera
نویسندگان
چکیده
Ground deformation and gravity changes in restless calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide). Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling), which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains. Informed by constraints available for the Campi Flegrei caldera (Italy), a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value) of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas). Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest, gravity changes become negative and decrease monotonically towards a steady-state value. Since the physics of the investigated hydrothermal system is similar to any fluid-filled reservoir, such as oil fields or CO2 reservoirs produced by sequestration, the generic formulation of the model will allow it to be employed in monitoring and interpretation of deformation and gravity data associated with other geophysical hazards that pose a risk to human activity.
منابع مشابه
Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity–height gradients
Hazard assessment and risk mitigation at restless calderas is only possible with adequate geophysical monitoring. We show here how detailed long-term microgravity and deformation surveys may contribute to hazard assessment at the Campi Flegrei caldera (CFc) in Italy by evaluating gravity–height change (∆g/∆h) gradients obtained during ground inflation and deflation between 1981 and 2001. Such g...
متن کاملLearning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes
Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological featu...
متن کاملA hydro-geophysical simulator for fluid and mechanical processes in volcanic areas
Efficient and accurate hydrothermal and mechanical mathematical models in porous media constitute a fundamental tool for improving the understanding of the subsurface dynamics in volcanic areas. We propose a finite-difference ghost-point method for the numerical solution of thermo-poroelastic and gravity change equations. The main aim of this work is to study how the thermo-poroelastic solution...
متن کاملMagma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera
We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km(3) of magma within a sill. This interrupts about 28 years of do...
متن کاملMulti-phase Fluid Circulation and Ground Deformation: a New Perspective on Bradyseismic Activity at the Phlegrean Fields (italy)
Like many caldera structures around the world, Phlegrean Fields caldera (Italy) periodically undergoes volcanic unrest, characterized by seismic activity and vertical ground displacement (bradyseism). These bradyseismic crises are usually interpreted as the product of pressure increment at the magma chamber level, but the existence of an important hydrothermal system in the area suggests that t...
متن کامل